Question-and-Answer Resource for the Building Energy Modeling Community
Get started with the Help page
Ask Your Question

Revision history [back]

When would it make sense to use a non-default surface convection algorithm?

There are four SurfaceConvectionAlgorithm:Inside and five SurfaceConvectionAlgorithm:Outside options for calculating surface convection in EnergyPlus. The default for inside is TARP and for outside is DOE-2 and I've never really considered trying the other options.

My question is what are the differences between the algorithms (in theory and in practice)?

  • Do some run faster than others?

  • Are some better-validated than others?

  • Do some capture different effects?

  • Are some more robust to errors/inaccuracies in input parameters?

Essentially, under what situations would it make sense to use anything other than the default options?

When would it make sense to use a non-default surface convection algorithm?

There are four SurfaceConvectionAlgorithm:Inside and five SurfaceConvectionAlgorithm:Outside options for calculating surface convection in EnergyPlus. The default for inside is TARP and for outside is DOE-2 and I've never really considered trying the other options.

My question is what are the differences between the algorithms (in theory and in practice)?

  • Do some run faster than others?

  • Are some better-validated than others?

  • Do some capture different effects?

  • Are some more robust to errors/inaccuracies in input parameters?

  • How large are the differences (in energy use or indoor conditions) when using different algorithms?

Essentially, under what situations would it make sense to use anything other than the default options?

When would it make sense to use a non-default surface convection algorithm?

There are four SurfaceConvectionAlgorithm:Inside and five SurfaceConvectionAlgorithm:Outside options for calculating surface convection in EnergyPlus. The default for inside is TARP and for outside is DOE-2 and I've never really considered trying the other options.

My question is what are the differences between the algorithms (in theory and in practice)?

  • Do some run faster than others?

  • Are some better-validated than others?

  • Do some capture different effects?

  • Are some more robust to errors/inaccuracies in input parameters?

  • How large are the differences (in energy use or indoor conditions) when using different algorithms?

Essentially, under what situations would it make sense to use anything other than the default options?