Question-and-Answer Resource for the Building Energy Modeling Community
Get started with the Help page
Ask Your Question
2

How does the Energyplus calculate the ideal loads?

asked 2018-12-03 21:46:23 -0600

Haohan Sha gravatar image

updated 2018-12-09 19:09:36 -0600

Hello, I check the engineering reference, but there is no clear equation. (of course maybe I miss it, if anyone knows the correct pages, please tell me). And this is an equation in basic part, it shows that the zone loads are calculated as: image description

The problem is that, I'm modelling a large zone with a large glazing facade, then I separated it into two vertical zones, (upper part and lower part). I used the ideal zone load air system to calculate the cooling energy. Except adding a floor slab in the middle and more AFN nodes, I didn't change anything. But the two zones total cooling energy is higher than the original single zone. I know maybe this is a correct result, but does any body know the reason? Because there is no internal heat gain, and weather change, just separating the zone into more zones, why can the ideal zone total cooling energy change?

After using the Zone Air Balance variable outputs, it can be seen that the model that are divided into two parts has higher surface convective rate than the original model. However, when I look into the solar radiation, the total amount of Surface Inside Face Solar Radiation Heat Gain Rate of the divided model is smaller than the original model. Why odes the lower input heat gain lead to higher convective heat transfer?

edit retag flag offensive close merge delete

1 Answer

Sort by ยป oldest newest most voted
2

answered 2018-12-06 17:32:21 -0600

That equation is a correct representation of the zone heat balance. All of the components of the heat balance are available as Output:Variables. My guess is that dividing the zone into two parts has changed the timing of when transmitted solar gains become a load. Start with these outputs for the two cases, and then you can add more detail once you know what area to focus on:

Output:Variable,*,Zone Air Heat Balance Internal Convective Heat Gain Rate,hourly; !- HVAC Average [W]
Output:Variable,*,Zone Air Heat Balance Surface Convection Rate,hourly; !- HVAC Average [W]
Output:Variable,*,Zone Air Heat Balance Interzone Air Transfer Rate,hourly; !- HVAC Average [W]
Output:Variable,*,Zone Air Heat Balance Outdoor Air Transfer Rate,hourly; !- HVAC Average [W]
Output:Variable,*,Zone Air Heat Balance System Air Transfer Rate,hourly; !- HVAC Average [W]
Output:Variable,*,Zone Air Heat Balance System Convective Heat Gain Rate,hourly; !- HVAC Average [W]
Output:Variable,*,Zone Air Heat Balance Air Energy Storage Rate,hourly; !- HVAC Average [W]

Also, try a case with a winter design day with no solar and constant temperature and see if the loads agree.

edit flag offensive delete link more

Comments

Yes, I think this is a good way to show all the Zone Thermal Load. And after dividing, Zone Air Heat Balance Surface Convection Rate become larger.

However, I found that the after dividing, the Surface Inside Face Solar Radiation Heat Gain Rate decreases.(I sum all values of the surfaces in the zone) I think this is not reasonable, since the convection rate increases...just like lower input but getting higher output.. Do you know the reason? Maybe I will add a new question...

Haohan Sha gravatar imageHaohan Sha ( 2018-12-09 15:00:11 -0600 )edit

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

 

Question Tools

1 follower

Stats

Asked: 2018-12-03 21:46:23 -0600

Seen: 114 times

Last updated: 7 mins ago